

US EPA RECORDS CENTER REGION 5
492103

311 S. WACKER DRIVE, SUITE 1670 CHICAGO, IL 60606 (P) 312.465.1740 (F) 262.523.9001

ENVIRONMENTAL CONSULTANTS

Mr. Ross del Rosario USEPA Region 5 – SR-6J 77 W. Jackson Boulevard Chicago, Illinois 60604-3590 March 12, 2012 (2034)

RE:

Administrative Order on Consent Response to USEPA Comments on Site-Specific Work Plan, Revision 1 North Station Upland Operable Unit, North Branch Site, Chicago, Illinois Peoples Gas Light and Coke Company

CERCLA Docket No. V-W-08-C-917 CERCLIS ID – ILD982074775

Dear Mr. del Rosario,

On behalf of Integrys Business Support, LLC (IBS), Natural Resource Technology, Inc. (NRT) is providing the enclosed two hard copies of replacement pages and two CD copies of the entire Site-Specific Work Plan (SSWP), Revision 1 Modified on March 12, 2012 for the Peoples Gas Light and Coke Company's (PGL) North Station Upland Operable Unit (OU) of the North Branch Site. These documents have been prepared as required in Section 1.1.2.2 of the Statement of Work (SOW) included with the Settlement Agreement and Administrative Order on Consent (Settlement Agreement) between United States Environmental Protection Agency (USEPA) and PGL effective October 31, 2008.

The enclosed modified documents have incorporated USEPA comments received on January 26, 2012 on the SSWP, Revision 1. For ease of review, historic comments are presented below in *italics*, followed by the current responses from IBS.

General Comments

USEPA General Comment #2 - Data Tables Screening Criteria: The source of the Residential screening criteria is not indicated, and should be provided. As with the agreed upon approach utilized for the Waukegan North Plant SSWP, the most recent EPA RSL tables should be used for data comparison purposes. If necessary, the data should be re-screened against the RSL criteria, and the tables should be updated. Some differences in screening criteria were noted between the Waukegan North Plant SSWP (dated June 30, 2011) and this Completion report, such as the screening criteria used for ethylbenzene and naphthalene. Screening criteria should be consistent between sites. No other footnotes or legend key is shown on the Tables other than "surface" or "floor" sample designations. Footnotes, keys and legends should be used to define abbreviations, etc.

11/28/11 IBS FOLLOWUP RESPONSE: Figures 7, 28 and 31, and appendices E1 and H have been modified to include the carcinogenic Regional Screening Levels (RSL) for naphthalene and ethylbenzene. In addition, the historic data summary in Section 3.7 has been updated to include comparison to these carcinogenic RSLs and a reference to the revised SLs is included in Section 4.3.

1/26/12 USEPA FOLLOWUP COMMENT: The IBS response is acceptable with the caveat that Table D-1 also be amended to include the residential carcinogenic screening criteria and summary statistics for naphthalene. The table currently shows only the non-carcinogenic criteria.

WWW.NATURALRT.COM

Mr. Ross del Rosario March 12, 2012 Page 2

3/12/12 IBS FOLLOWUP RESPONSE: Table D-1 has been modified to include the cancer endpoint screening level for naphthalene for residential soil, 3,600 ug/kg. Summary statistics related to the screening level have also been modified. Hard copies of Tables D-1 and D-2 are attached for replacement in the document. Table D-2 has not been modified, however it was printed on the back of Table D-1 in Revision 1 of the document, so replacement of both tables is necessary.

1/26/12 USEPA Additional Comment - Per our recent discussions regarding the Division Street Preliminary RI Results, the procedure for evaluating field duplicate results (i.e. data review, validation, data usability, data assessment and corrective action responses) does not appear to be specified in the Multi Site FSP document (dated 9/8/2008), or the Multi Site QAPP (dated 9/4/07). In addition, the North Station Site-Specific QAPP document (Appendix B1 of the submittal) does not contain any discussion of field duplicate evaluation either. Revisions to one or more of these documents are requested to describe the procedures that will be used for the evaluation and use of all field duplicate data. This request is made to clarify the procedures that will be followed if any future discrepancies arise that are similar to the issue that was discovered at Division Street monitoring well location MW -110.

3/12/12 IBS FOLLOWUP RESPONSE: The groundwater sample duplicate issue identified in the Division Street preliminary data set has been investigated per the Multi-Site QAPP and Site-Specific QAPP. The cause of the apparent disparity between the investigative and duplicate samples originally attributed to well MW-110 was due to an error in transcription of field data to the electronic database. As field notes describe, the duplicate sample was collected at well MW-101, not well MW-110. This correction has been made in the database and tables and figures associated with Division Street.

Consistent with the response to USEPA's comment letters for Division Street and North Plant, as a further corrective action regarding the duplicate issue, IBS will perform a final QC check of all data files created by field contractors prior to uploading duplicate sample data into the database. Electronic files will be verified by comparison to field notes.

Uniform Federal Policy (UFP) QAPP Worksheet #28 is attached to describe evaluation of field duplicate results for aqueous and non-aqueous media in the IBS Multi-Site Program. The approach outlined in the worksheets is based on the Multi-Site QAPP Table 6, the *EPA Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, Revised* (USEPA, December 1996), and an email from Ross del Rosario (USEPA) to Naren Prasad (IBS) on January 24, 2012, titled "Sample Duplicate Discrepancies."

The modified hard-copy documents enclosed should replace Tables D-1 and D-2 of the SSWP, Revision 1 (November 28, 2011). The modified CDs enclosed contain the entire SSWP, Revision 1, modified on March 12, 2012. Please contact Mr. Naren Prasad of IBS at 312.240.4569 if you should have any questions regarding the content of this letter.

Sincerely,

NATURAL RESOURCE TECHNOLOGY, INC.

Sarah Meyer

Senior Scientist/Project Manager

Jennifer M. Kahler, PE Senior Engineer

Janifer M. Kuhler

WWW.NATURALRT.COM

Mr. Ross del Rosario March 12, 2012 Page 3

Modified Table D-1 and original Table D-2 (hard copy replacement pages for SSWP, Revision 1) Multi-Site QAPP Addendum, UFP QAPP Worksheet #28 Enc:

SSWP, Revision 1, Modified March 12, 2012 (on CD)

Mr. D. Wilson, IEPA CC:

Mr. Naren Prasad, IBS Mr. David Klatt, CH2MHill

w	W	/V.I	NA I	UK	ALt	۲۱.۷	CO	м

SMARTER SOLUTIONS

EXCEPTIONAL SERVICE

VALUE

SITE SPECIFIC WORK PLAN, REVISION 1

North Station Former MGP North Branch Operable Unit, Chicago, IL Peoples Gas Light and Coke Company

Project No: 2034

Modified - March 12, 2012

ENVIRONMENTAL CONSULTANTS

311 S. WACKER, SUITE 1670 CHICAGO, IL 60606 (P) 312.465.1740 (F) 262.523.9001

SITE-SPECIFIC WORK PLAN

PEOPLES GAS LIGHT AND COKE COMPANY NORTH STATION FORMER MGP, NORTH BRANCH OPERABLE UNIT CHICAGO, ILLINOIS

CERCLA Docket No. V-W-08-C-917 CERCLIS ID – ILD982074775

Project No. 2034

Prepared For:

Integrys Business Support, LLC 130 East Randolph Street, 22nd Floor Chicago, IL 60601

Prepared By:

Natural Resource Technology, Inc. 311 S. Wacker Drive, Suite 1670 Chicago, Illinois 60606

> Revision 1 Modified - March 12, 2012

Sarah L. Meyer/ Project Manager Jennifer M. Kahler, PE

Senior Engineer

WWW.NATURALRT.COM

APPENDIX D

MODIFIED TABLES - MARCH 12, 2012

SITE-SPECIFIC COPC SCREEN FOR SOIL, GROUNDWATER, SEDIMENT AND SURFACE WATER

Table D-1 – Summary Statistics for Soils on the ComEd, LaSalle Chestnut, Division-Halsted and City Right-of-Way Parcels

North Station Operable Unit

Site-Specific Work Plan

Analyte	Residential SL ^a (ug/kg)	[Min] (ug/kg)	[Max] (ug/kg)	# Sample Results Above Residential SL	Total # Samples Analyzed	# Sample Results Above MDL	% Samples Analyzed Above MDL	Min MDL (ug/kg)	Max MDL (ug/kg)
VOCs		自然的表现				1.1. 1.50	253 200		
Benzene	1,100	2	730,000	67	284	109	38.38	3	100
Xylenes, Total	630,000	5	860,000	2	284	112	39.44	4	100
SVOCs									
2-Methylnaphthalene	310,000	85	7,670,000	9	167	72	43.11	330	2200
3,3-Dichlorobenzidine	1,100	6,000	6,000	1	131	1	0.76	700	4,000
Dibenzofuran	7,800	55	137,000	1	167	59	35.33	300	2,200
PAHs	Specifically a		400						经数据证据
Benzo(a)anthracene	150	32	745,000	211	379	234	61.74	25	530
Benzo(a)pyrene	15	30	460,000	257	379	257	67.81	20	400
Benzo(b)fluoranthene	150	27	350,000	203	379	227	59.89	25	530
Benzo(k)fluoranthene	1,500	33	170,000	117	379	228	60.16	25	530
Chrysene	15,000	38	696,000	37	284	206	72.54	25	530
Dibenz(a,h)anthracene	15	29	83,000	229	379	229	60.42	20	530
Indeno(1,2,3-cd)pyrene	150	29	160,000	180	371	211	56.87	25	17,000
Naphthalene	3,600	26	8,680,000	93	377	231	61.27	28	530
Pyrene	1,700,000	30	1,900,000	1	284	214	75.35	25	400
Metals	新特·艾尔·基门。		通常营业的						
Arsenic, Total ^b	13,000	23	44,500	37	282	279	98.94	10	NA
Lead, Total	400,000	10	2,100,000	4	260	259	99.62	NA	NA

Table D-1 – Summary Statistics for Soils on the ComEd, LaSalle Chestnut, Division-Halsted and City Right-of-Way Parcels North Station Operable Unit Site-Specific Work Plan

NOTES:

Screening levels (SL) are primarly based on USEPA Regional Screening Levels (RSL) and taken from the hierarchy of SLs developed for the Integrys Business Support LLC Manufactured Gas Plant sites in the multi-site program (Exponent, Risk-Assessment Framework Addendum, April 2011).

Bolded percentages indicate analytes were detected above SL in more than 5% of the samples.

[Max] - Maximum concentration

[Min] - Minimum concentration

MDL - Method detection limit

PAH - Polycyclic aromatic hydrocarbon

PCB - Polychlorinated biphenyl

SL - Screening level

SVOC - Semivolatile organic compound

ug/kg - Micrograms per kilogram

VOC - Volatile organic compound

^a Soil samples screened against the residential soil screening values in the IBS Multi-Site Screening Level Hierarchy.

^b Background concentration of arsenic in metropolitan counties of IL are 13.0 mg/kg (IL TACO-Table G). Total arsenic screened against background in this line.

Table D-2 – Site-Specific COPCs for Soil, Groundwater, Sediment and Surface Water
North Station Operable Unit
Site-Specific Work Plan

	Parcels							
COPCs	ComEd, LaSalle Chestnut, Division- Halsted, and City Right-of- Ways	Division and Halsted	Old Town Village West	North Branch Canal				
Soil								
North Station Site-				AND THE CONTRACTOR				
Specific COPC list ^a	X							
Multi-site RAF COPC				Company of the ordinary				
list ^b		Х	X					
PCBs		X	X					
TCL VOCs			Х	e de la company de la comp La company de la company d				
Groundwater								
North Station Site-								
Specific COPC list ^a	X	X	X	11.20				
Total antimony	X	X	X					
Total lead	X	X	X					
Available cyanide	X	X	X					
Phenol	X	X	X					
Styrene	X	Х	Х					
Sediment								
Multi-Site RAF COPC list ^b				X				
Surface Water	Property of Art and a service of the							
Multi-Site RAF COPC list ^b				х				

NOTES:

X - Parameter selected as COPC

Shaded box indicates that matrix does not apply to the parcel.

COPC - Constituants of potential concern

PAH - Polycyclic aromatic hydrocarbon

PCB - Polychlorinated biphenyl

PVOC - Petroleum VOC

RAF - Risk Assessment Framework

TCL - Target Compound List

VOC - Volatile organic compound

^a North Station Site-Specific COPC list includes: PVOCs from the multi-site RAF list, PAHs form the multi-site RAF list, 2-methylnaphthalene, dibenzofuran, total arsenic, total lead, and PCBs.

^b The constituents on the Multi-Site RAF COPC list are presented in Appendix D-1.

MULTI-SITE QAPP ADDENDUM UFP QAPP WORKSHEET #28

		Method/SOP QC		Person(s) Responsible for	Data Quality	Measurement Performance
QC Sample:	Frequency/Number	Acceptance Limits	Corrective Action	Corrective Action	Indicator (DQI)	Criteria
Field duplicate	1 in 10	NA	Estimate (J)	Project	Calculate RPD	RPD<30%, per Multi-Site
(aqueous)	investigative		positive values	manager, with	for compounds	QAPP Table 6 and
	samples,			data validator	detected at	Region I, EPA-NE Data
	unless			and laboratory	concentrations	Validation Functional
	otherwise]	manager, as	\geq 2x the	Guidelines for
}	specified		1	needed	quantitation	Evaluating
					limit (QL)	Environmental Analyses,
			Use professional		Calculate RPD	Revised (USEPA,
			judgement to		for compounds	December 1996)
			accept, qualify		detected at	
			or reject		concentrations	
			positive detects		\geq QL and $<$ 2x	
		•	for the compound.		QL	
			If data is			
			rejected,			
			location may be			
			re-sampled.			Į
Field duplicate	1 in 20		Estimate (J)		Calculate RPD	
(non-aqueous)	investigative		positive values		for compounds	
	samples, unless				detected at concentrations	
	uniess otherwise					
	specified			1	≥ 2x QL	
	specified		Use professional		Calculate RPD	
		•	judgement to		for compounds	
			accept, qualify		detected at	ļ
			or reject positive detects		concentrations	
			for the compound.		≥ QL and < 2x	
			If data is		QL	
			rejected,			
			location may be			
			re-sampled.			

QAPP Worksheet #28

(UFP-QAPP Manual Section 3.4)

Complete a separate worksheet for each sampling technique, analytical method/SOP, matrix, analytical group, and concentration level. If method/SOP QC acceptance limits exceed the measurement performance criteria, the data obtained may be unusable for making project decisions.

QC Samples Table

[
Matrix	Aqueous and		
	Non-Aqueous		
Analytical Group	PCBs		
Concentration Level	All		
Sampling SOP	SAS-08-		
	02/SAS-06-		
	01		
Analytical Method/	SW846 8081		
SOP Reference			
Sampler's Name	TBD		
Field Sampling	TBD		
Organization			
Analytical	TBD		
Organization			
No. of Sample	TBD		
Locations			

Title: Multi-Site QAPP
Addendum
Addendum Date: 3/12/12
Page _1__ of _2__

QC Sample:	Frequency/Number	Method/SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator (DQI)	Measurement Performance Criteria
Field duplicate	1 in 10	NA NA	Estimate (J)	Project	Calculate RPD	RPD<30%, per Multi-Site
(aqueous)	investigative	NA	positive values	manager, with	for compounds	OAPP Table 6 and
(aqueous)	samples,		positive values	data validator	detected at	Region I, EPA-NE Data
	unless				concentrations	Validation Functional
	otherwise			and laboratory		Guidelines for
	specified			manager, as needed	≥ 5x the	Evaluating
	apecified			needed	quantitation limit (QL)	Environmental Analyses,
					Calculate	Revised (USEPA,
					absolute	December 1996)
					difference for	December 19907
		,			compounds detected at	
					concentrations	
					< 5x QL	
Field duplicate	1 in 20				Calculate RPD	
(non-aqueous)					for compounds	
(non-aqueous)	investigative samples,				detected at	
	unless				concentrations	i '
	otherwise					
	specified				≥ 5x QL	
	specified		•		Calculate	
					absolute	
					difference for	
					compounds	
					detected at	
					concentrations	
L	<u> </u>		<u> </u>		< 5x QL	

QAPP Worksheet #28

(UFP-QAPP Manual Section 3.4)

Complete a separate worksheet for each sampling technique, analytical method/SOP, matrix, analytical group, and concentration level. If method/SOP QC acceptance limits exceed the measurement performance criteria, the data obtained may be unusable for making project decisions.

QC Samples Table

Matrix	Aqueous and
	Non-Aqueous
Analytical Group	Inorganics
Concentration Level	All
Sampling SOP	SAS-08-
	02/SAS-06-
	01
Analytical Method/	SW846
SOP Reference	6020/7471A/
	9012A/OIA
	1677
Sampler's Name	TBD
Field Sampling	TBD
Organization	
Analytical	TBD
Organization	
No. of Sample	TBD
Locations	

Title: Multi-Site QAPP Addendum Addendum Date: 3/12/12

Page _1__ of _2__

QC Sample:	Frequency/Number	Method/SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator (DQI)	Measurement Performance Criteria
Field duplicate	1 in 10	NA	Estimate (J)	Project	Calculate RPD	RPD<30%, per Multi-Site
(aqueous)	investigatįve	1	positive values	manager, with	for compounds	QAPP Table 6 and
	samples,			data validator	detected at	Region I, EPA-NE Data
	unless			and laboratory	concentrations	Validation Functional
	otherwise			manager, as	\geq 2x the	Guidelines for
	specified			needed	quantitation	Evaluating
					limit (QL)	Environmental Analyses,
			Use professional		Calculate RPD	Revised (USEPA,
			judgement to		for compounds	December 1996)
j.			accept, qualify		detected at	
			or reject		concentrations	
			positive detects		≥ QL and < 2x	
			for the compound.		QL	
			If data is			
			rejected,			1
			location may be			
			re-sampled.			
Field duplicate	1 in 20		Estimate (J)		Calculate RPD	
(non-aqueous)	investigative		positive values		for compounds	
	samples,				detected at	
	unless				concentrations	
	otherwise		<u> </u>		≥ 2x QL	
	specified		Use professional		Calculate RPD	
			judgement to		for compounds	
	1		accept, qualify		detected at	
	•		or reject		concentrations	
	1		positive detects		≥ QL and < 2x	
			for the compound.		$_{ m QL}$	
			If data is			
1	ļ		rejected,			
			location may be			
			re-sampled.			

QAPP Worksheet #28

(UFP-QAPP Manual Section 3.4)

Complete a separate worksheet for each sampling technique, analytical method/SOP, matrix, analytical group, and concentration level. If method/SOP QC acceptance limits exceed the measurement performance criteria, the data obtained may be unusable for making project decisions.

QC Samples Table

Matrix	Acricona and
, Truck in	Aqueous and
, :-	Non-Aqueous
Analytical Group	VOCs/SVOCs
Concentration Level	All
Sampling SOP	SAS-08-
	02/SAS-06-
	01
Analytical Method/	SW846
SOP Reference	8260/8270
Sampler's Name	TBD
Field Sampling	TBD
Organization	
Analytical	TBD
Organization	
No. of Sample	TBD
Locations	

5 5

Title: Multi-Site QAPP
Addendum
Addendum Date: 3/12/12
Page _1__ of _2__